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PARTITIONS OF UNITY AND APPROXIMATION

C DE BOOR AND R. DEVORE1'2

Abstract. We show that for certain translation invariant spaces 5, a necessary and

sufficient condition for the eventual denseness of the corresponding scaled spaces Sh

is that S contain a stable and locally supported partition of unity. These results have

been motivated by recent work on approximation by multivariate piecewise poly-

nomials on regular meshes.

1. Introduction. We are interested in the existence of partitions of unity in certain

translation invariant spaces. We are motivated by recent investigations (listed in the

references) of approximation by multivariate piecewise polynomial functions on

regular partitions—a partition t of Rm is called regular if / + t = t for all/ e Z"'.

These investigations study the degree of approximation from the spaces Trf(hj),

h > 0, which consist of pp (i.e., piecewise polynomial) functions in C(Rm) of total

degree k on the dilated partition /it. It has been possible to determine the

approximation order from these spaces only for very special partitions and certain

values of p and k. In particular, there are no general results which characterize when

Ua>o 77ap(^t) is dense in the space of continuous functions with compact support.

The main technique for proving denseness or giving lower estimates for the degree

of approximation has been to construct a partition of unity in it£(t) consisting of

certain multivariate B-splines known as box splines and to use this partition of unity

to construct suitable approximation schemes called quasi-interpolants.

It has not been clear to us whether this represents the only viable approach to the

construction of suitable approximants. For example, in [BDH] we have asked the

following:

,     , Is UA>07r/(/iT) dense in C0(RS) if and only if 7rAp(T) contains a

good partition of unity?

By a good partition of unity we mean a (countable) collection <E> of functions with

the properties that

(i) sup^^diamsupp^ < oo;

(1.2)       (ii)E^*-l;

(iii) E^H < CO.
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Actually, it is easy to see that the existence of a good partition of unity is

sufficient for denseness. Namely, if x^ g supp <£, then Lf:= T.^eí>f(x<j))<¡> gives an

operator L whose dilate Lh:= ox/hLoh, with (ohf)(x):= f(hx), provides an ap-

proximation Lhfin ir^(hj) which converges to fas h -* 0.

It turns out, but is much more difficult to prove, that the existence of a good

partition of unity is necessary for denseness. Here we shall present a proof of this

fact for the univariate case but for much more general spaces 5 than just pp ones, in

an attempt to extract the essential features of pp function spaces on regular

partitions.

The ideas of the proof seem to carry over to the multivariate case, but the

constructions involved are much more involved. For this reason, we feel that it is

beneficial to present here the basic ideas in their simplest setting and report

elsewhere on their multivariate analogues.

2. The main results. We let 5 be a space of functions on R with the following

properties:

(i) S is translation invariant, i.e.,/ e 5" =>/(•+ 1) e S;

(2 x)     (")m:= dim5i[o.ii< °°;

(iii) dim S = oo ;

(iv) S1 is closed under uniform convergence on compact sets.

We note for later reference that (i) and (iii) imply

(v) dimS| [0,00= oo.

These are the essential properties of pp spaces over regular meshes. However, it is

easy to give examples of such spaces S which are not pp. For example, if 3> is a finite

collection of compactly supported functions, then the closure under uniform conver-

gence on compact sets of the span of the translates </>. := </>(•— /)./ G Z, <j> e $, has

these properties. The results of this section will show that any space S satisfying (2.1)

can be obtained this way modulo some finite-dimensional space.

Associated with S we have the dilated spaces Sh := ox/hS.

Theorem 1. If \}h>QSh is dense in C0(R), then S contains a good partition of unity.

In preparation for the proof, we now construct certain compactly supported

functions in A Let 5" denote the subspace of 5 consisting of those functions which

vanish on (-oo,0]. It will follow later that 5" is nontrivial. For now, we prove

Lemma 2. For each integer n > 0, there is an Rn such that any <j> G 5 vanishing on

[~R„,0] agrees on [0, n] with some function from S~.

Proof. For r, j > 0, we let LrJ denote the space of functions defined on [0, /]

which are restrictions of functions in S which vanish on [-r, 0]. Then LrJ ç Lr>j

whenever r > r'. Hence (dim Lrf)f=x is a decreasing sequence of (nonnegative)

integers and therefore is eventually constant. This implies that we can find an
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increasing sequence (Ay) such that L   • = La= LR  , for all r > R , / = 1,2,_

Now given n > 0 and <f> g L„, we define

«.:=/? + /',    r,■ := max{Rn , «,},        ; = 0,1,_

Then, since rx > Rn > R„, there is an/, G 5 which vanishes on [-a"i,0] and agrees

with <j> on [0, «]. Similarly, r2^ Rn > R„ and so there is an/2 G S which vanishes

on [-r2,0] and agrees with/, on [0, n,]. In this manner, we obtain a sequence (/•)

such that fj vanishes on [-/v, 0] and agrees with / on [0, «,] for all i </. Hence /

converges uniformly on compact sets to some/, necessarily in S~ because of (2.1)(iv),

with the desired properties.   D

Now let R := Rx be the constant of Lemma 2. We improve Lemma 2 in the

following way:

Lemma 3. If f g S vanishes on [-R, 0], then <¡>:= f\ ,0 x) is in S~.

Proof. From Lemma 2, we know an f0 g S~ for which/ — f0 vanishes on [-R, 1].

Hence there is some /, with /,(• + 1) g 5", therefore also /, e S", for which

f — f0 — fx vanishes on [-R, 2]. In this manner, we construct a sequence (/) in 5"

for which f0+ ■ ■ ■ + fj converges to <b. Since S ' is closed under uniform conver-

gence on compact sets (by (2.1)(iv)), ijeX".    D

Next, we construct a basis of compactly supported functions for S~. Recall the

definitionp:= dim S\,0 x] and set M:= pR.

Lemma 4. If f eS", then there is a function § g 5 which is supported on [0, M] and

agrees with f on [0,1].

Proof. Set J:= [M, M + R] and consider the functions /:= /(■—/), / =

0,...,M. Since dim S\j < M, these functions are linearly dependent on /. Hence

there are numbers c,, not all zero, such that ^0:= ECjfj vanishes on J. Let i be the

smallest value of / for which cy + 0. Then \p:= \p0(- — i)/c¡ agrees with/on [0,1]

and vanishes on a + [-R,0] with a:= M + R — i. Therefore, by Lemma 3,

\px := \p(- + a)X[o. oo) is m S'and so <b:= \p — \px(- — a) has the desired properties.

D

It follows from Lemma 4 that there is a finite collection B of functions supported

on [0, M] whose restrictions to [0,1] form a basis for (S")|[(U]. We use the

abbreviation b.\= b(- — j), b g B, j g Z. The peeling-off argument of Lemma 3

shows that the functions by, b g B, j = 0,1,2,..., form a basis for S ". But, in order

to insure local linear independence of this basis, we need to choose B with some

care. Precisely, we choose B so that length(7?):= EAefilength(¿>) is minimal. Here,

we mean by length(ft) the smallest integer r for which supp 6 ç [i, i + r] for some

integer i.

Lemma 5. For any interval J:= [r, r + R], with r an arbitrary integer and R as

before, the collection

$y := {by. supp fynJ* 0 }

is linearly independent over J.
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Proof. Suppose that we have/:= E^^ c^> = 0 on J. Then, by Lemma 3, we can

find some g g 5~so that/, := / — g(- — (r + R)) vanishes on [r, oo). If not all the

coefficients c^ were zero, then we could choose some $ := £»• with c^ ='-cb #0 and so

that/ is as small as possible. Since B is linearly independent over [0,1], ifx)\n,j+i] ^

0, and hence we must have/ < r. Since /, vanishes outside [/, r], while suppft,

intersects [j, j + 1] as well as J, this would imply that

length^) < r -j < length^)

while f2:= /,( • + /) g S~ and, on [0,1], is in the span of B with the coefficient of b

not zero. But then B':= (B\{b))U {/2} would also supply a basis and length

(B') < length(Ä), contradicting our choice of a basis of minimal length.    D

Suppose now that / = E c¿¡> with the sum over all </> = ft, with / g Z and b g fi.

Then the local linear independence just proved allows the conclusion that

(2-2) \cb,\ < «MStft/tay+jHlL

for some constant independent of ft and/.

Since S|[_R 0j is finite dimensional, we can choose a finite-dimensional subspace T

of A which is carried faithfully onto S\{_R 0] by the restriction map / —> /|(_R,0]- F°r

s g S, let sT be the unique element of T which agrees with s on [-A,0]. Then

(s — sT)X[o.oo] e S'by Lemma 3, hence on  [0, oo),

(2-3) s = sT+   £   £ cbbj
/>0 />eß

for suitable coefficients ch. Since S|[0i00) is infinite dimensional by (2.1)(v), this

shows that B =£ 0 and that 5 T is also infinite dimensional. Further, since the linear

space of all linear maps from T to A|(_Äi0] has dimension (dim T)2, the maps

T-* s\\-R.oyf^f{-- a)\i-R.ov        a^A,

must be linearly dependent whenever A c Z and \A\> (dim T)2. This together with

Lemma 3 implies that, for any A c Z with more than (dim T)2 elements, there exist

coefficients ca, a g A, so that

(2.4)     maxca = max |cj = 1,   X[o,«> E ca/(- - a) g S^   forall/GT.
ae.4

Proof of Theorem 1. Let g be the continuous piecewise linear function with

integer breakpoints which has the value 1 at x = 1,2,3 and vanishes at all other

integers. Since g g C0(R), there is sh g Sh such that sh converges to g uniformly on

R. From now on, we consider only h g 1/N. We write sh:= ahsh and gA:= ahg.

Then \\gh — sh\\ —> 0 as h -» 0. Since sh g S, we have sh = th + s¿ on [0, oo), with

th G T and s¡¡ g 51". Now choose .4 c 8N/A as above. Then the functions gh(- — a),

a G A, are supported in [0, oo) and have disjoint supports. We define

Gh-=   L cagh(-- a),
aeA

with the ca as given by (2.4). Then/,, := Eae^cflJA(- - a) is in S~, and ||/A - Gh\\ -» 0

as /! -^ 0.
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Now, because of (2.4), Gh is identically one on an interval of the form [mh — X/h,

mh + X/h]. Hence, with Fh := fh(- + mh), we have \\Fh - l||r_wAil/A] ~^ 0 as h -» 0.

Since/,, g S", we can write Fh =:EysZEfceBcA (h)b<■. In view of (2.2),

(2.5) \ch (h)\ < const    for all ft, /, h.

We can take therefore a subsequence h' of h so that, for all ft and/, ch (W) converges

as h' -» 0 to some ch. It follows that £yeZEAcA ft, converges uniformly on compact

sets to some function F g 5. Since we also have that Fh converges to F uniformly on

compact sets, we must have F = X. Thus (ch bj)beB JeZ is a partition of unity in S. It

is good because of (2.5).    D
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